Browse our Products
Aspose.OCR for Python via .NET 25.9.0 - Release Notes
This article contains a summary of recent changes, enhancements and bug fixes in Aspose.OCR for Python via .NET 25.9.0 (September 2025) release.
What was changed
Key | Summary | Category |
---|---|---|
OCRNET‑1097 | Improve markdown output format with table detection. | New feature |
OCRNET‑1093 | HOCR export to MemoryStream and incompatibility with Aspose.PDF conversion. | Bug fix |
Public API changes and backwards compatibility
This section lists all public API changes introduced in Aspose.OCR for Python via .NET 25.9.0 that September affect the code of existing applications.
Added public APIs:
No changes.
Updated public APIs:
The following public APIs have been updated in Aspose.OCR for .NET 25.9.0 release:
aspose.ocr.ai.TableAIProcessor
class
🛠 Constructors
# Initializes a new instance of the TableAIProcessor class
TableAIProcessor(mode) #AITableDetectionMode
Aspose.OCR for Python vis .NET can now automatically detect tables and save them in Markdown format.
New Methods
Method | Description |
---|---|
save_md(path) | Saves the extracted structured tables into a Markdown (.md) file. |
Compatibility: partial backward compatibility. See details below.
aspose.ocr.OcrOutput
class
The save(full_file_name, save_format)
method has been enhanced: now the Markdown output also supports automatic table detection and insertion.
Deprecated APIs
The following public APIs have been marked as deprecated and will be removed in 25.10.0 (October 2025) release:
RectangleOutput
class
AsposeOcr.detect_rectangles
method
RecognitionResult.recognition_areas_text
RecognitionResult.recognition_areas_rectangles
RecognitionResult.skew
CharacterRecognitionResult.image_index
SkewOutput.image_index
RecognitionResult.skew
RecognitionResult.skew
RecognitionResult.skew
Removed public APIs:
No changes.
Examples
The code samples below illustrate the changes introduced in this release:
Enable Table AI postprocessor
from aspose.ocr import *
from aspose.ocr.ai import *
from aspose.ocr.models import *
# Initialize recognition API
api = AsposeOcr()
# Add an image to OcrInput object
input = OcrInput(InputType.SINGLE_IMAGE)
input.add("source.png")
# Recognize image
results = api.recognize(input)
# Initialize AI API
ai = AsposeAI()
config = AsposeAIModelConfig()
proces = TableAIProcessor(AITableDetectionMode.AUTO)
ai.set_post_processor(proces, config)
ai.run_postprocessor(result)
corrected = proces.get_result()
print(corrected[0].recognition_text)
ai.free_resources()